Filtered Index Design Guidelines
A filtered index is an optimized nonclustered index, especially suited to cover queries that select from a well-defined subset of data. It uses a filter predicate to index a portion of rows in the table. A well-designed filtered index can improve query performance, reduce index maintenance costs, and reduce index storage costs compared with full-table indexes.
Filtered indexes can provide the following advantages over full-table indexes:
- Improved query performance and plan qualityA well-designed filtered index improves query performance and execution plan quality because it is smaller than a full-table nonclustered index and has filtered statistics. The filtered statistics are more accurate than full-table statistics because they cover only the rows in the filtered index.
- Reduced index maintenance costsAn index is maintained only when data manipulation language (DML) statements affect the data in the index. A filtered index reduces index maintenance costs compared with a full-table nonclustered index because it is smaller and is only maintained when the data in the index is affected. It is possible to have a large number of filtered indexes, especially when they contain data that is affected infrequently. Similarly, if a filtered index contains only the frequently affected data, the smaller size of the index reduces the cost of updating the statistics.
- Reduced index storage costsCreating a filtered index can reduce disk storage for nonclustered indexes when a full-table index is not necessary. You can replace a full-table nonclustered index with multiple filtered indexes without significantly increasing the storage requirements.
No comments:
Post a Comment